Thermodynamic Study of Self-Assembly Behavior of Propranolol Hydrochloride in Aqueous Solutions as a Function of Electrolyte Concentration and Temperature

Juan M. Ruso,* Alfredo González-Pérez, Gerardo Prieto, and Félix Sarmiento

Biophysics and Interfaces Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

Density and ultrasound measurements of propranolol hydrochloride in aqueous solutions were carried out as functions of the drug molality, in the presence of different concentrations of added electrolyte (0.00, 0.01, 0.03, and 0.05) mol kg⁻¹ NaCl and at the temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K. The critical micelle concentrations were determined using the Phillips definition. To calculate changes in the thermodynamics properties of micellization, the mass action model was applied.

Introduction

The importance of surfactants arises from their widespread applications (shampoos, soaps, detergents). However, some drugs exhibit the same behavior as that of traditional surfactants, due to their ability to spontaneously form aggregates when dispersed in aqueous solutions. This property arises form their amphiphilic structure,¹ and it is really important for their pharmacological applications. The association of drugs has been examined by several workers,²⁻⁴ finding a change in the slope of some physicochemical properties of these drugs in aqueous solutions which is indicative of a self-aggregation. This discontinuity is identified with the critical micelle concentration, and the shape and size of these aggregates depend mainly on the surfactant structure, ionic strength, temperature, and so forth.

Classical models of micelle formation can be divided into two broad categories: the pseudophase separation model and the mass action model. The phase separation model assumes that the micelles are a separate (pseudo)phase commencing at the cmc, representing the saturation concentration for monomeric surfactants. The simple mass action model considers an average micelle that is in equilibrium with surfactant monomers in a dilute aqueous solution. In this model, the micelle formation is reversible. In this paper we report determinations of ultrasound velocity and densities of propranol hydrochloride in the presence of added electrolyte in the concentration range $(0.00 \text{ to } 0.50) \text{ mol } \text{kg}^{-1}$ and at the range temperatures from (288.15 to 303.15) K. For each system critical micelle concentrations were calculated and from these values thermodynamic parameters of micellization, such as free energy, enthalpy, and entropy, have been calculated by using a modified mass action model. This model has been successfully applied in the calculation of the thermodymamics of association of several amphiphilic drugs, such as chlorhexidene digluconate⁵ or amphiphilic penicillins.⁶

Experimental Section

Ultrasound velocities and densities were continuously, simultaneously, and automatically measured using an DSA

5000 Anton Paar density and sound velocity analyzer with a resolution of $\pm 10^{-6}$ g cm⁻³ and 10^{-2} m s⁻¹, respectively. Both the speed of sound and density are extremely sensitive to the temperature, so this was kept constant within 10^{-3} K. The reproducibility of the density and ultrasound velocity measurements is $\pm 10^{-6}$ g cm⁻³ and 10^{-2} m s⁻¹, respectively. Measurements of densities and ultrasound velocities of the aqueous solutions of propranolol hydrochloride in the presence of added electrolyte (0.00, 0.10, 0.30, and 0.50) mol kg⁻¹ NaCl in the range of temperatures (288.15 to 313.15) K were performed as a function of their concentration.

Propranolol (1-[isopropylamino]-3-[1-naphthyloxy]-2-propranol) hydrochloride (No. P-0884) was purchased from Sigma Chemical Co. and sufficiently well characterized and purified to be used as received. Sodium chloride (Fluka) was of analytical grade. Water was double distilled, deionized, and degassed before use.

Results and Discussion

Experimental results are given in Table 1. The first column of the table shows the molality of propranolol hydrochloride, and the density and ultrasound velocity are listed below the corresponding temperature. Figure 1 shows plots of ultrasound velocity, *u*, as a function of molality in the absence of NaCl; similar plots were obtained for the other electrolyte concentrations. The results obtained for each temperature and electrolyte concentration were analyzed, using the Phillips definition,⁷ to detect the presence of critical micelle concentrations corresponding to the maximum change in gradient in plots of the ultrasound velocity versus concentration:

$$\left(\frac{\mathrm{d}^3 u}{\mathrm{d}m^3}\right)_{m=\mathrm{cmc}} = 0 \tag{1}$$

The numerical analysis of the data was made by means of a developed algorithm based on the Runge–Kutta numerical integration method and the Levenberg–Marquardt least-squares fitting algorithm which allows the determination of precise values of the critical micellar concentrations of amphiphiles with weak aggregation characteristics.⁸ The dotted line in Figure 2 is a Gausssian fit of the second derivative of the curve, with the minimum

^{*} To whom correspondence should be addressed. Telephone: $+34\ 981\ 563\ 100.$ Fax: $+34\ 981\ 520\ 676.$ Electronic mail: faruso@usc.es.

Table 1. Densities, ρ , and Ultrasound Velocities, u, as a Function of Concentration, m, of Propranolol Hydrochloride at Different Temperatures

	T/K = 2	88.15	T/K = 2	293.15	T/K = 2	98.15	T/K = 3	03.15	T/K = 3	08.15	T/K = 3	13.15
т	ρ	и	ρ	и	ρ	u	ρ	и	ρ	и	ρ	и
mol kg ⁻¹	g cm ⁻³	$m s^{-1}$	g cm ⁻³	${\rm m}~{\rm s}^{-1}$	g cm ⁻³	${\rm m}~{\rm s}^{-1}$	g cm ⁻³	${\rm m}~{\rm s}^{-1}$	g cm ⁻³	$m s^{-1}$	g cm ⁻³	${\rm m}~{\rm s}^{-1}$
					0.00 1	nol kg ⁻¹ ľ	VaCl					
0.01	0.999 524	1470.07	0.998 626	1485.13	0.997 465	1499.25	0.996 066	1511.57	0.994 447	1522.10	0.992 593	1530.93
0.02	0.999 975	1471.67	0.999 070	1486.44	0.997 910	1500.55	0.996 511	1512.87	0.994 883	1523.41	0.993 015	1532.25
0.03	1.000 440	1473.31	0.999 548	1488.25	0.998 381	1502.33	0.996 985	1514.23	0.995 358	1524.68	0.993 455	1533.51
0.05	1.001 421	1476.36	1.000 529	1491.21	0.999 368	1505.49	0.997 934	1516.98	0.996 292	1527.49	0.994 339	1536.12
0.07	1.002 432	1479.82	1.001 521	1494.16	1.000 355	1508.60	0.998 937	1520.01	0.997 261	1530.47	0.995 251	1538.92
0.09	1.003 453	1482.87	1.002 553	1497.48	1.001 378	1511.52	0.999 949	1522.93	0.998 267	1532.90	0.996 166	1540.84
0.00	1 004 491	1486.35	1 003 587	1500.38	1 002 420	1514 76	1 000 971	1525 77	0 999 246	1536.30	0 997 099	1544 22
0.13	1 005 531	1489 22	1 004 606	1503.81	1 003 421	1517 53	1 001 999	1528 40	1 000 263	1538 53	0 997 994	1546 56
0.15	1 006 576	1400.22	1 005 632	1506.01	1 004 444	1519 54	1 003 029	1530 50	1 001 244	1540.46	0.007 001	15/18/20
0.17	1 007 580	1494 59	1 006 631	1507.82	1 005 464	1520.81	1 004 022	1532 11	1 002 220	1541 62	0.999 780	1549 40
0.19	1 008 588	1/05/02	1.000 001	1509.64	1 006 474	1522 76	1 005 031	1533 45	1 003 215	1543 44	1 000 683	1550.90
0.15	1 000 564	1407.20	1.007 054	1511 81	1.000 474	1524 44	1.005.051	1535.31	1.003 213	1544.00	1 001 548	1559.94
0.21	1 010 528	1407.20	1.008 055	1513 26	1.007 434	1525 02	1.000 028	1536.03	1.004 217	1546.36	1.001 348	1552.00
0.25	1.010 528	1450.15	1.003 330	1010.20	1.000 307	1525.52	1.000 330	1550.55	1.005 145	1340.30	1.002 403	1333.33
					0.10 1	nol kg ⁻¹ ľ	VaCl					
0.01	1.003 912	1475.21	1.002 957	1490.40	1.001 746	1509.86	1.000 301	1516.36	0.998 647	1527.41	0.996 768	1535.40
0.02	1.004 330	1476.77	$1.003\ 362$	1491.97	1.002 158	1511.13	1.000 705	1517.62	$0.999\ 049$	1528.65	0.997 189	1536.67
0.03	1.004 772	1478.06	1.003 772	1493.66	$1.002\ 564$	1512.80	1.001 125	1519.25	0.999 465	1529.99	$0.997\ 601$	1538.17
0.05	$1.005\ 648$	1481.49	$1.004\ 631$	1496.47	1.003 414	1515.97	1.001 963	1522.00	1.000 309	1532.80	0.998 444	1541.12
0.07	1.006 491	1484.69	1.005 499	1499.69	$1.004\ 265$	1519.08	1.002 815	1524.79	1.001 153	1535.56	0.999 303	1544.10
0.09	1.007 369	1488.00	$1.006\ 348$	1502.76	1.005 101	1522.13	$1.003\ 651$	1527.96	1.002 001	1538.21	1.000 167	1547.23
0.11	1.008 218	1491.21	1.007 198	1505.78	1.005 959	1524.64	1.004 471	1530.08	$1.002\ 847$	1540.73	1.001 011	1549.40
0.13	$1.009\ 067$	1493.96	$1.008\ 040$	1507.94	1.006 783	1526.58	$1.005\ 298$	1532.00	$1.003\ 659$	1542.30	1.001 842	1550.87
0.15	1.009 896	1495.80	1.008 861	1510.14	1.007 601	1528.60	1.006 104	1533.86	$1.004\ 458$	1544.24	1.002 679	1552.67
0.17	1.010 730	1497.42	1.009~695	1512.20	1.008 408	1530.46	1.006 883	1535.70	1.005 246	1546.05	1.003 504	1553.88
0.19	1.011 563	1499.12	1.010 483	1514.14	1.009 190	1532.42	1.007 685	1537.52	1.006 039	1547.76	1.004 333	1555.47
0.21	1.012 368	1500.91	1.011 287	1516.31	1.009 961	1534.32	1.008 431	1539.49	1.006 781	1549.45	1.005 138	1556.72
0.23	1.013 172	1502.75	1.012 054	1518.66	1.010 746	1536.28	1.009 193	1541.36	1.007 563	1551.35	1.005 930	1558.13
					0.30 1	nol ka-1 N	NaCl					
0.01	1 011 730	1/88 99	1 010 583	1504 26	1 009 486	1517 62	1 008 181	1529 24	1 006 334	1539 17	1 00/ 312	1517 19
0.01	1 012 134	1400.53	1 010 082	1505.50	1 000 988	1510.14	1.000 101	1520.24	1.000 334	1540 42	1 004 712	1548 60
0.02	1.012 134	1400.00	1.010 382	1507.92	1 010 202	1510.14	1.008.071	1522.02	1.000 720	1540.42	1.004712	1540.00
0.05	1.012 333	1492.02	1.011.303	15101.23	1.010 2.32	1520.31	1.000 371	1524.03	1.007 120	1541.02	1.005 110	1549.90
0.03	1.013.374	1495.07	1.012 223	1510.10	1.011 133	1525.20	1.009 795	1534.01	1.007 520	1544.24	1.005 512	1554.00
0.07	1.014 220	1497.94	1.013.070	1512.55	1.011 972	1525.00	1.010 000	1530.42	1.000 744	1540.15	1.000 / 10	1556.90
0.09	1.015 042	1499.72	1.013.031	1516 /1	1.012 750	1520.20	1.011 424	1540.22	1.009.331	1547.05	1.007 314	1557 91
0.11	1.013 673	1501.72	1.014 724	1510.41	1.013 019	1529.20	1.012 220	1540.55	1.010 300	1549.00	1.000 009	1550.96
0.15	1.010 091	1505.74	1.010 040	1510.34	1.014 430	1500.00	1.013 040	1542.15	1.011 130	1552.02	1.009.092	1509.00
0.15	1.017 307	1503.33	1.010 333	1520.32	1.013 241	1533.03	1.013 821	1545.82	1.011 940	1553.03	1.009 877	1501.13
0.17	1.018 302	1507.00	1.017 132	1522.00	1.010 049	1534.42	1.014 039	1545.50	1.012 724	1556.45	1.010 041	1502.49
0.19	1.019 099	1509.44	1.017 944	1524.00	1.010 830	1530.42	1.015 408	1547.54	1.013 300	1550.45	1.011 413	1505.97
0.21	1.019 882	1511.20	1.018 /11	1526.05	1.017 592	1538.17	1.016 152	1549.12	1.014 272	1558.10	1.012 172	1505.04
0.23	1.020 645	1513.35	1.019 470	1527.77	1.018 360	1540.21	1.016 914	1550.98	1.015 015	1559.97	1.012 907	1567.29
					0.50 1	nol kg ⁻¹ ľ	VaCl					
0.01	1.020 031	1500.65	1.018 850	1515.65	1.017 461	1528.30	1.015 866	1539.99	1.014 088	1549.74	1.012 132	1557.68
0.02	1.020 395	1503.25	1.019 220	1518.39	1.017 829	1531.10	1.016 237	1542.04	1.014 451	1551.74	1.012 498	1559.24
0.03	1.020 764	1505.92	1.019 581	1521.05	1.018 196	1533.44	1.016 620	1543.81	1.014 813	1553.37	1.012 857	1561.02
0.05	1.021 495	1509.14	1.020 329	1523.56	1.018 939	1535.92	1.017 341	1546.23	1.015 563	1556.06	1.013 590	1564.22
0.07	1.022 236	1510.14	1.021 063	1524.73	1.019 662	1536.93	1.018 078	1547.23	1.016 307	1557.00	1.014 349	1565.09
0.09	1.022 962	1511.29	1.021 797	1525.69	1.020 396	1537.99	1.018 803	1548.35	1.017 039	1557.97	1.015 085	1565.95
0.11	1.023 678	1512.33	1.022 511	1526.75	1.021 120	1539.05	1.019 528	1549.43	1.017 775	1558.93	1.015 824	1566.86
0.13	1.024 382	1513.35	1.023 211	1527.74	1.021 833	1540.18	1.020 241	1550.56	1.018 488	1559.92	1.016 552	1567.76
0.15	1.025 075	1514.44	1.023 917	1528.71	1.022 532	1541.11	1.020 930	1551.72	1.019 183	1560.91	1.017 258	1568.52
0.17	1.025 772	1515.50	1.024 614	1529.75	1.023 232	1542.22	1.021 631	1552.71	1.019 881	1561.76	1.017 959	1569.44
0.19	1 026 445	1516.61	1 025 296	1530.66	1 023 920	1543 28	1 022 319	1553 88	1 020 568	1562 74	1 018 653	1570.99
0.10	1 027 193	1517 54	1 025 975	1531 55	1 024 604	1544 37	1 022 996	1554 97	1 021 265	1563 65	1 019 343	1571 17
0.23	1.027 788	1518 50	1.026 638	1532.64	1.025 261	1545 38	1.023 656	1556 02	1.021 920	1564 57	1.020 021	1571 68
0				A COWINT		A O A O O O O		1000.0W		2 U U I U I		TO 1 TIOD

value corresponding to the cmc. Values for all the electrolyte concentrations and temperatures can be obtained from Table 2.

The variation of the cmc with the temperature of propranolol is shown in Figure 3 and passes through a minimum around 295 K for the four electrolyte concentrations. These plots were fitted to the equation

$$\ln \chi_{\rm cmc} = a(T/K)^2 + b(T/K) + c$$
 (2)

where χ_{cmc} is the mole fraction of the cmc. Values for the three coefficients *a*, *b*, and *c* are shown in Table 3.

Figure 4 shows plots of density, ρ , against molality. Similar behavior was found for the other electrolyte concentrations. The variation of density with the molal concentration below the cmc was fitted to the empirical equation⁹

$$\rho = \rho_0 + (Am + Bm^{3/2} + Cm^2 + Dm^{2/5})/10^3 \qquad (3)$$

where ρ_0 is the density of pure electrolyte at each temperature. Values of the least-squares parameters, *A*, *B*, *C*, and *D* are given in Table 4, together with the variance for the fits.

Figure 1. Ultrasound velocities, *u*, as a function of propranolol hydrochloride molality, *m*, for an aqueous solution containing 0.00 mol kg⁻¹ NaCl: ■, 288.15 K; ●, 293.15 K; ▲, 298.15 K; ▼, 303.15 K; ♦, 308.15 K; □, 313.15 K.

Figure 2. Ultrasound velocities, *u*, as a function of propranolol hydrochloride molality, *m*, for an aqueous solution containing 0.00 mol kg⁻¹ NaCl at 298.15 K. The dotted line represents the second derivative of the ultrasound–concentration curve. The arrow denotes the cmc.

 Table 2. Critical Micelle Concentrations of Propranolol

 Hydrochloride as a Function of NaCl Concentration (m)

	$m_{\rm cmc}/({ m mod})$	$m_{ m cmc}/({ m mol}~{ m kg}^{-1})$ at the following $m/({ m mol}~{ m kg}^{-1})$				
<i>T</i> /K	0.00	0.10	0.30	0.50		
288.15	0.138	0.102	0.057	0.039		
293.15	0.133	0.098	0.052	0.035		
298.15	0.131	0.097	0.050	0.034		
303.15	0.134	0.103	0.056	0.039		
308.15	0.148	0.108	0.061	0.043		
313.15	0.159	0.122	0.068	0.049		

Table 3. Coefficients a, b, and c for Fits of Eq 2 as aFunction of NaCl Concentration (m)

<i>m</i> /(mol kg ⁻¹)	a/K^{-2}	b/K^{-1}	с
0.00	0.00071 ± 0.00010	-0.42 ± 0.06	56 ± 9
0.10	0.00074 ± 0.00008	-0.43 ± 0.05	58 ± 7
0.30	0.0011 ± 0.00023	-0.63 ± 0.14	87 ± 20
0.50	0.0012 ± 0.00027	-0.719 ± 0.16	99 ± 24

The thermodynamic properties of aggregation were derived by application of the mass action model¹⁰⁻¹² as follows. Assuming that the ultrasound velocity of propranolol solutions, *u*, is a linear function of the concentration of all species that take part in the aggregation process, we

Figure 3. Natural logarithm of the critical micellar concentrations in mole fractions, $\ln \chi_{cmc}$, of propranolol hydrochloride in aqueous solutions containing \blacksquare , 0.00 mol kg⁻¹; \blacklozenge , 0.10 mol kg⁻¹; \blacklozenge , 0.30 mol kg⁻¹; or \checkmark , 0.50 mol kg⁻¹ NaCl, as a function of temperature. The continuous lines were calculated from eq 2.

Figure 4. Density of an aqueous solution of propranolol hydrochloride containing 0.00 mol kg⁻¹ NaCl: **a**, 288.15 K; **b**, 293.15 K; **b**, 298.15 K; **c**, 303.15 K; **c**, 308.15 K; **c**, 313.15 K.

can write

$$u = q[S] + h[M] \tag{4}$$

where q and h are proportionality constants and [S] and [M] are the concentrations of the monomer and aggregate, respectively. For our system, the equilibrium between ions and aggregates is represented by

$$n\mathbf{S}^{+} + (n-p)\mathbf{G}^{-} \Leftrightarrow \mathbf{M}^{p+}$$
(5)

where G⁻, S⁺, and M^{p+} represent the counterion, drug ion, and aggregates of aggregation number *n* and charge *p*. The equilibrium constant is written as

$$K_{\rm m} = \frac{[{\rm M}^{p^+}]}{[{\rm G}^-]^{n-p} [{\rm S}^+]^n} \tag{6}$$

To calculate K_m in addition to *n* and *p*, the concentrations of both single ions and the aggregates at any one total ion concentration are required, for which we use the definition of Phillips, eq 1, of critical micellar concentration.

 Table 4. Parameters for Fits of Eq 3 as a Function of NaCl Concentration (m)

m ^a	T^b	A^c	B^d	C^e	D^{f}
0.0	288.15	30 ± 2	88 ± 12	-107 ± 19	0.27 ± 0.09
	293.15	35 ± 10	59 ± 57	-63 ± 10	0.07 ± 0.4
	298.15	27 ± 9	104 ± 50	-139 ± 50	0.35 ± 0.36
	303.15	37 ± 12	43 ± 12	-30 ± 17	0.06 ± 0.51
	308.15	45 ± 13	-5.6 ± 76	47 ± 17	-0.24 ± 0.5
	313.15	39 ± 2	26 ± 13	-27 ± 12	-0.27 ± 0.09
0.1	288.15	50 ± 15	-27 ± 82	34 ± 11	-0.68 ± 0.59
	293.15	20 ± 3	118 ± 19	-182 ± 31	0.52 ± 0.14
	298.15	23 ± 9	99 ± 51	-158 ± 42	0.46 ± 0.37
	303.15	36 ± 9	36 ± 50	-60 ± 21	-0.06 ± 0.36
	308.15	37 ± 5	27 ± 27	-38 ± 14	-0.03 ± 0.19
	313.15	45 ± 5	-22 ± 25	52 ± 10	-0.25 ± 0.18
0.3	288.15	18 ± 10	133 ± 57	-218 ± 93	0.54 ± 0.41
	293.15	22 ± 7	102 ± 37	-165 ± 40	6.33 ± 0.26
	298.15	25 ± 5	90 ± 27	-146 ± 35	0.29 ± 0.19
	303.15	35 ± 10	37 ± 56	-64 ± 22	-0.10 ± 0.40
	308.15	44 ± 8	-21 ± 41	40 ± 17	-0.34 ± 0.29
	313.15	39 ± 5	14 ± 26	-31 ± 12	-0.22 ± 0.18
0.5	288.15	24 ± 3	15 ± 19	-26 ± 11	-0.07 ± 0.14
	293.15	24 ± 4	15 ± 25	-28 ± 11	-0.07 ± 0.18
	298.15	33 ± 3	23 ± 18	-43 ± 21	0.018 ± 0.13
	303.15	41 ± 8	-19 ± 47	23 ± 17	-0.21 ± 0.34
	308.15	21 ± 4	86 ± 21	$-138 \pm \! 34$	0.52 ± 0.15
	313.15	33 ± 10	14 ± 52	-14 ± 5	0.10 ± 0.38

 a In mol kg $^{-1}.$ b In K. c In g cm $^{-3}$ mol $^{-1}$ kg. d In g cm $^{-3}$ mol $^{-3/2}$ kg $^{3/2}$. e In g cm $^{-3}$ mol $^{-2}$ kg 2 . f In g cm $^{-3}$ mol $^{-2/5}$ kg $^{2/5}$.

The mass balance for drug ions (c_t) is expressed as

$$c_{\rm t} = [{\rm S}^+] + n[{\rm M}^{p+}]$$
 (7)

and simultaneously solving eqs 1 and 4-7, the following equilibrium constant $K_{\rm m}$ can be obtained

$$\frac{1}{K_{\rm m}} = n \frac{(2n-p)(4n-2p-1)}{2n-p-2} \times \left[\frac{(2n-p)(4n-2p-1)}{(2n-p-1)(4n-2p+2)} X_{\rm cmc} \right]^{2n-p-1}$$
(8)

Experimental data of n and p were available for this systems from static light scattering measurements.¹³ The variation of ln K_m with temperature was attributed only to the temperature coefficient of the cmc and was fitted to a second-order polynomial of the form

$$\ln K_{\rm m} = s(T/{\rm K})^2 + r(T/{\rm K}) + t$$
 (9)

The values of *s*, *r*, and *t* are listed in Table 5. The plot of $\ln K_{\rm m}$ against *T* is shown in Figure 5.

Values (per mole of monomer) of the standard Gibbs energy change, $\Delta G_{\rm m}^{\circ}$, the standard enthalpy change, $\Delta H_{\rm m}^{\circ}$, and the standard entropy change, $\Delta S_{\rm m}^{\circ}$, on aggregation (see Table 6) were calculated from the following expressions:

$$\Delta G_{\rm m}^{\circ} = -\left(\frac{RT}{n}\right) \ln K_{\rm m} \tag{10}$$

$$\Delta H_{\rm m}^{\rm o} = \left[\frac{\partial (\Delta G_{\rm m}^{\rm o})/T}{\partial \left(\frac{1}{T}\right)}\right]_p = -\frac{RT^2}{n} \left(\frac{\partial \ln K_{\rm m}}{\partial T}\right)_p \qquad (11)$$

$$\Delta S_{\rm m}^{\rm o} = -\frac{1}{T} (\Delta G_{\rm m}^{\rm o} - \Delta H_{\rm m}^{\rm o}) \tag{12}$$

We can see that Gibbs energy and enthalpy decrease with temperature. The enthalpy of micellization shows a

Figure 5. Natural logarithm of the aggregation equilibrium constant, $\ln K_m$, of propranolol hydrochloride in aqueous solutions containing **1**, 0.00 mol kg⁻¹; **•**, 0.10 mol kg⁻¹; **•**, 0.30 mol kg⁻¹; or **v**, 0.50 mol kg⁻¹ NaCl, as a function of temperature. The continuous lines were calculated from eq 9.

Table 5. Coefficients a, b, and c for Fits of Eq 9 as a Function of NaCl Concentration (m)

m/(mol kg ⁻¹)	s/K^{-2}	<i>r</i> /K ^{−1}	t
0.00	-0.0133 ± 0.0019	7.9 ± 1.1	-1060 ± 170
0.10	-0.0159 ± 0.0017	9.4 ± 1.1	-1263 ± 150
0.30	-0.0499 ± 0.0095	26.1 ± 5.7	-3587 ± 860
0.50	-0.062 ± 0.015	$\textbf{38.6} \pm \textbf{8.9}$	-5337 ± 1300

Table 6. Standard Gibbs Energy, ΔG_m° , Enthalpy, ΔH_m° , and Entropy, ΔS_m° , of Micelle Formation Per Mole for Propranolol Hydrochloride in Aqueous Solution at Different Temperatures^{*a*}

<i>T</i> /K	$\Delta G_{\rm m}^{\circ}/({\rm kJ~mol^{-1}})$	$\Delta H_{\rm m}^{\rm o}/({\rm kJ~mol^{-1}})$	$\Delta S^{\circ}_{\mathrm{m}}/(\mathrm{J} \mathrm{\ mol}^{-1} \mathrm{K}^{-1})$			
0.00 mol kg ⁻¹ of NaCl						
288.15	-25.41	22.84	167.64			
293.15	-26.04	14.33	137.82			
298.15	-26.56	5.19	106.57			
303.15	-26.90	-4.58	73.65			
308.15	-26.87	-15.02	38.46			
313.15	-26.96	-26.13	2.62			
	0.10	mol kg ⁻¹ of NaCl				
288.15	-25.85	14.17	138.95			
293.15	-26.47	5.19	108.06			
298.15	-26.97	-4.44	75.62			
303.15	-27.15	-14.72	41.03			
308.15	-27.38	-25.68	5.52			
313.15	-27.26	-37.34	-32.19			
	0.30	mol kg ⁻¹ of NaCl				
288.15	-27.46	21.62	170.44			
293.15	-28.32	9.31	128.46			
298.15	-28.97	-3.88	84.21			
303.15	-28.97	-17.98	36.28			
308.15	-29.08	-33.01	-12.78			
313.15	-29.07	-49.00	-63.70			
	0.50	mol kg ⁻¹ of NaCl				
288.15	-29.67	20.73	171.61			
293.15	-29.64	8.13	128.91			
298.15	-30.26	-5.36	83.56			
303.15	-30.19	-19.79	34.34			
308.15	-30.27	-35.16	-15.88			
313.15	-30.20	-51.51	-68.12			

^{*a*} Experimental uncertainties: $\pm 10\%$ for ΔG_{m}° ; $\pm 20\%$ for $\Delta S_{m}^{\circ}\Delta H_{m}^{\circ}$ and $\Delta S_{m}^{\circ}\Delta S_{m}^{\circ}$.

change from positive to negative values close to 298.15 K. Positive values are generally attributed to the release of structural water from the hydration layers around the hydrophobic parts of the molecule.¹⁴ As the temperature

Figure 6. Enthalpy–entropy coJmpensation plot for aqueous solutions of propranolol hydrochloride containing \Box , 0.00 mol kg⁻¹; \bigcirc , 0.10 mol kg⁻¹; \bigcirc , 0.30 mol kg⁻¹; or \bigtriangledown , 0.50 mol kg⁻¹ NaCl. The inset shows the variation of $\triangle H_m^{\circ}$ * with electrolyte concentration.

Table 7. Values Obtained from the Linear Fit of theCompensation Plots (Figure 6) as a Function of NaClConcentration (m)

$m/(\text{mol kg}^{-1})$	$\Delta H_{ m m}^{ m o}$ */(kJ mol ⁻¹)	$T_{\rm c}/{ m K}$
0.00	89.8 ± 0.3	337 ± 2
0.10	90.9 ± 0.4	332 ± 2
0.30	97.5 ± 0.6	332 ± 2
0.50	101.7 ± 0.6	333 ± 2

is increased, the structure of water is partially brokendown, and hydrophobic interactions become less significant. The negative values of enthalpy suggest the importance of the London-dispersion interactions as an attractive force for micellization.¹⁵ The entropy values calculated by this model decrease progressively with temperature (see Table 6), showing that at temperatures below the cmc minimum the aggregation is driven solely by the positive $\Delta S_{\rm m}^{\circ}$.

The values for the thermodynamic functions become increasingly negative with an increase of electrolyte concentration as the system becomes more hydrophobic.¹⁶

To correlate the enthalpic and entropic contributions to micellization, ΔH°_{m} versus ΔS°_{m} , the so-called compensation phenomenon,^{17–19} has been plotted in Figure 6. The results were fitted to the equation $\Delta H^{o}_{m} = \Delta H^{o}_{m} * + T_{c} \Delta S^{o}_{m}$. $T_{\rm c}$ is the compensation temperature and reflects the cooperation of enthalpy with entropy for the micellization process of propranolol. When hydrated ionic groups of surfactants are bound with surrounding water molecules, the process leads to an energetic stabilization (negative enthalpy changes). At the same time, the motion of water molecules bound to ionic groups causes a decrease in entropy. The value of $T_{\rm c}$ remains constant when the electrolyte concentration is increased (see Table 7), and it is quite close to values reported for alkyltrimethylammonium bromides, ¹⁹ 308 ± 4 K. In this situation, the driving force of micelle formation comes only from the enthalpic term; that is, the standard Gibbs energy of micellization only has an enthalpic term. $\Delta H_{\rm m}^{\rm o\,*}$ is related with the hydrophobic moiety and decreases when the alkyl chain is increased. However, maintaining the same hydrophobic moiety, this value increases with the electrolyte concentration almost linearly (see the inset in Figure 6).

Literature Cited

- Hunter, R. J. Foundations of Colloid Science; Oxford University Press: New York, 1995; Volume I.
- (2) Attwood, D.; Florence, A. T. Surfactant Systems; Chapman and Hall: London, 1983; Chapter 4.
- (3) Attwood, V.; Dickinson N. A.; Mosquera, V.; Pérez Villar, V. Osmotic and Activity Coefficients of Amphiphilic Drugs in Aqueous Solution. J. Phys. Chem. 1987, 91, 4203–4206.
- (4) Attwood, V.; Mosquera, V.; Pérez Villar, V. Thermodynamics Properties of Amphiphilic Drugs in Aqueous Solution. J. Chem. Faraday Trans. 1 1989, 85, 3011–3017.
- (5) Sarmiento, F.; del Rio, J. M.; Prieto, G.; Attwood, D.; Jones, M. N.; Mosquera, V. Thermodynamics of micelle formation of chlorhexidine digluconate. *J. Phys. Chem.* **1995**, *99*, 17628–17631.
- (6) Taboada, P.; Attwood, D.; García, M.; Jones, M. N.; Ruso, J. M.; Mosquera, V.; Sarmiento F. Thermodynamics of association of structurally related amphiphilic penicillins. *J. Colloid Interface Sci.* 2000, *221*, 242–245.
- (7) Phillips, J. N. The energetics of micelle formation. *Trans. Faraday Soc.* 1955, *51*, 561–569.
- (8) Pérez-Rodríguez, M.; Prieto, G.; Rega, C.; Varela, L. M.; Sarmiento, F.; Mosquera, V. A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. *Langmuir* **1998**, *14*, 4422–4426.
- (9) Atwood, D.; Bludell, R.; Mosquera, V.; Garcia, M.; Rodriguez, J. Apparent molar volumes and adiabatic compressibilities of aqueous solutions of amphiphilic drugs. *Colloid Polym. Sci.* 1994, 272, 108–114.
- (10) Mukerjee, P. *Physical Chemistry. Enriching Topics from Colloid and Surface Science*; Van Olfen, H., Mysels, K. J., Eds.; Theorex: La Jolla, CA, 1975.
- (11) Rusanov, A. I. The mass action law theory of micellar solutions. Adv. Colloid Interface Sci. 1993, 45, 1–78.
- (12) Equations of State for Fluids and Fluids Mixtures; Sengers, J. V., Kayser, R. F., Peters, C. J., White, J. J., Jr., Eds.; Elsevier: Amsterdam, 2000.
- (13) Ruso, J. M.; Attwood, D.; Rey, C.; Taboada, P.; Mosquera, V.; Sarmiento, F. Light scattering and NMR studies fo the selfaggregation of the amphiphilic molecule propranolol hydrochloride in aqueous electrolyte solution. *J. Phys. Chem. B* **1999**, *103*, 7092–7096.
- (14) Kresheck, G. C. *Water: A comprehensive treatise*; Franks, F., Ed.; Plenum: New York, 1995.
- (15) Nusselder, J. J. H.; Engberts, J. B. F. N. Toward a better understanding fo the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 1992, 148, 353–366.

- Taboada, P.; Attwood, D.; Ruso, J. M.; García, M.; Sarmiento, F.; Mosquera, V. Effect of electrolyte on the surface and thermody-namic properties of amphiphilic penicillins. *J. Colloid Interface Sci.* 1999, *220*, 288–292.
 Lumry, R.; Rajender, S. Enthalpy-entropy compensation phe-nomena in water solutions of proteins and small molecules: a ubiquitous property of water. *Biopolymers* 1970, *9*, 1125–1227.
 Chen, L.-J.; Lin, S.-Y.; Huang, C.-C. Effect of hydrophobic chain length of surfactants on enthalpy-entropy compensation of
- length of surfactants on enthalpy–entropy compensation of micellization. J. Phys. Chem. B **1998**, 102, 4350–4356.
- (19) Sugihara, G.; Hisatomi, M. Enthalpy-Entropy Compensation Phenomenon Observed for Different Surfactants in Aqueous Solution. J. Colloid Interface Sci. **1999**, 219, 31-36.

Received for review June 13, 2003. Accepted July 23, 2003. A.G.-P. thanks the University of Santiago de Compostela for his postdoctoral grant.

JE034118H